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A DIGITAL HIGHER ORDER INTERPOLATION 

PATHCONTROLLER* 

By William Granville Batte 
Langley Research Center 

SUMMARY 

A two-axis digital higher order interpolation path controller for generating a smooth 
incremental path through discrete Cartesian input data is designed, constructed, and 
evaluated. 

The novel interpolation technique exhibits the following features: 

(1) Its digital implementation is simple relative to classical higher order interpo- 
lation schemes. 

(2) It is readily adaptable to incremental techniques and to the calculus of finite 
differences . 

(3) It accommodates unequal argument spacing. 

(4) It processes multivalued and closed contour functions. 

(5) It can accommodate raw or nonpreprocessed data. 

(6) It is readily expandable to multidimensions. 

Although the controller may be applied in many areas including control of machine 
tools, navigation, simulation, function generation, remote control, and automatic plotting, 
the experimental model is evaluated with a standard incremental x-y plotter as the out- 
put device and a punched paper tape reader as the input device. 

Laboratory tests were made on the implemented system and actual copies of its 
output are included. These results show that the approach is feasible and that the 
research objectives a r e  met. 

INTRODUCTION 

The subject controller is a two-axis digital higher order interpolation device which 
generates a smooth incremental path through discrete, plane Cartesian input data. These 
data, which may fall into any one or more of the four quadrants, are sequentially ordered 

The information presented herein was included in a thesis submitted in partial * 
fulfillment of the requirements for the degree of Doctor of Philosophy, Case Institute of 
Technology, Cleveland, Ohio, 1965. 



as received so that the generated path follows this ordering. Since no attempt is made to 
f i t  the data to some analytic function, the controller may be viewed as a device for auto- 
matically "applying the draftman's french curve. *' 

Although the controller is developed for use in automatic plotting, it may be applied 
in  many other areas  including control of machine tools, navigation, simulation, function 
generation, and remote control. Also, the mathematical scheme may be used as an inter- 
polation technique for certain types of general purpose computing. 

The controller is the result of research directed toward satisfying a need in auto- 
matic digital plotting. Automatic x-y plotters have replaced manual methods in most 
facilities where large quantities of data a r e  displayed graphically. Most of these plotters 
produce point plots in which a pen or symbol head marks the locations corresponding to 
the various discrete x-y input values. In addition, some plotters (e.g., the Beckman 210 
tape-to-plotter system) can also produce continuous curves in which the discrete input 
data a r e  connected by straight-line segments. Not one plotter, however, is effective in 
"placing the french curve through the points" as was commonly done in the manual 
methods. 
controller capable of supplying the "french curve" even under conditions of (a) data with 
unequal argument spacing, (b) mul-tivalued or closed contour functions, and (c) raw or 
nonpreprocessed data. Secondary objectives require the hardware to be relatively simple 
and fast enough to keep the output device operating at its inherent maximum speed. 

Consequently the primary objective of this research is to evolve a simple 

Numerous digital controllers a r e  in existence but each fails in one or more ways 
to satisfy these objectives. For example, Mergler's machine tool controller (ref. 1) 
requires rate information to be supplied as a part  of the input data and, hence, does not 
satisfy condition (c). His proposed quadratic (second order) technique recognizes its 
inadequacies for certain "geometry" and, in addition, requires "equal intervals of the 
argument,'' each of which renders the scheme inadequate for the present application. 

Several second-order systems a r e  in existence but they too do not satisfy condi- 
tion (c). For example, the Bendix Dynapath system (ref. 2) requires, for circular inter- 
polation, that the initial and final positions of the radius vectors be supplied as a portion 
of the input data. Similarly, the Fuji system (ref. 3) requires that the input data be 
expressed in a coordinate system whose origin is at the center of the arc. Even more 
serious, however, is that the present application requires at least a third-order interpo- 
lation as demonstrated in reference 4. 

Ninke (ref. 5) recently adapted the Newton-Gauss interpolation technique to a digital 
third-order controller. Using digital differential analyzer (DDA) methods, the system 
consists of three digital integrators cascaded so that the third derivative introduced at 
the first integrator is successively integrated three times, this integration yielding the 
path function at the output of the last integrator. The initial conditions of the integrators 
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and corrections thereto must be supplied as a portion of the input data; hence, condi- 
tion (c) is violated. Also the simplicity with which these quantities are computed is a 
result of the assumption by Ninke that the input data are spaced at equal increments of 
the arguments; hence, condition (a) is also violated. 

A similar scheme is outlined in reference 6 where again the approach is based on 
equal arguments. 

A s  with most digital systems the controller has its analog counterpart. In many 
situations, however, the accuracy requirement renders the analog approach ineffective. 
Consider, for example, even simple linear interpolation where it is required to connect 
two points with a straight line. This problem is approached with the conventional analog 
closed-loop plotter by integrating the inputs to the two axes with the same effective time 
constants. The solution sounds simple, but the word "effective" requires a considera- 
tion of the unbalanced inertias and frictions on the two axes, the unbalanced breakaway 
torques, and, of course, settings of gain, damping, and so forth. Furthermore, higher- 
order interpolation is even more complex! 

The study of existing controllers and classical interpolation techniques as applied 
to the performance requirements of the subject controller leads to the following broad 
observations which a re  presented in the nature of hypotheses upon which the controller's 
design is based 

(1) It is not important to f i t  the input data to some analytic function (e.g., a third- 
degree polynomial or perhaps some french curve logarithmic function); instead, it is 
more important to utilize some hardware-oriented (though perhaps less  mathematical) 
scheme such as a goal seeking system. 

(2) Since the entire path must be generated, as opposed to merely evaluating a few 
isolated function values, a finite difference technique should be utilized such that the 
function change is computed and used to update the function along the generated path. 

(3) Since the finite difference technique will no doubt result in many isolated arith- 
metic units, the internal coding should be natural binary with negative numbers repre- 
sented in two's complement notations. This coding will simplify the designs of the units. 

(4) Since any closed contour path contains at least two infinite slopes, a technique 
which obviates the large slope problem (refs. 5 and 6) must be used. 

(5) For simplicity of the experimental hardware, an incremental, open-loop control 
system should be used. (Where applications require absolute or incremental closed-loop 
systems, the experimental design is easily adapted to them.) 

(6) Since the path must be generated from any data point through the next point, the 
direction of the latter point with respect to the present position of the generated path is an 
important variable and should probably appear explicitly in the basic interpolation scheme. 
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Other philosophies peculiar to various par ts  of the controller are found in the 
appropriate design sections. 

SYMBOLS AND NOTATIONS 

Literals 

Arithmetic: 

a,b,c,d, e 

AJ accumulator J where J is any integer 

(AJ) quantity in AJ 

(AJx),(AJy) quantity in x or y portion of AJ 

CJ counter J where J is any integer 

(c J) quantity in C J  

dlC/,dx,. . . infinitesimal differentials 

set  of input data points 

* 
ds 

F 

K 

k,k- l,k+l 

L 

P 

Q 

R 

RJ 

S 

instantaneous curvature of a trajectory 

multiplier associated with binary rate multiplier 

constant which relates two equivalent angles +hl and q2 

present, previous, and next values of a discrete quantity 

length of (Le., number of bit positions or stages in) accumulator, counter, 
or register 

point on generated path 

proportionality constant which determines trajectory 

carriage return character on tape 

register J where J is any alphabetical character 

quantity in x or y portion of R J  

trajectory path 
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sc 1 

SWJ 

6 (c4c) 

6Q,6x,. . . 
A 

AQ,A@,. ' * 

E 

e 

4 

P 

4 

Q 

ICJ I 

sign of quantity within brackets 

switch J where J is any integer or  alphabetical character 

Cartesian coordinates 

tangent angle of generated path at last data point 

tangent angle of generated path at next data point 

corrected e r ro r  distance between grid corner and s-curve-grid-line 
inter section 

change in coarse portion of quantity in counter 4 

finite difference o r  change in Q, x, . . . 

"space" character on tape separating x- and y-data 

total change in Q, @, . . . 

e r ro r  between @ and OC 

motion angle required for coincidence with s-curve at next grid crossing; 
subscript c o r  f denotes coarse o r  fine portion of 8, respectively 

merging function which starts from Qc and ends at @ 

predicted e r ro r  distance between grid corner and s-curve-grid-line 
intersection 

steering angle o r  instantaneous angle of tangent to theoretical trajectory 

angle of present position with respect to next data point 

absolute value of (CJ) 

Pr ime with symbol indicates quantity is expressed in transformed coordinate 
system. 
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Logic: 

A,B,C,. . . 

Ak,Ak+l 

Bk 

ALA J]., B [A J] 

Boolean variables 

augend (minuend) bit in accumulator before and after arithmetic operation, 
respectively 

addend (subtrahend) bit input to accumulator 

A and B inputs of AJ 

accumulator (counter) is subtracting (counting backwards) 

operation of AJ is negative 

carry (borrow) bit in accumulator before and after addition (subtraction), 
respectively 

propagation signal P of AJ 

shift pulse generator J where J is any integer 

set, reset, and trigger (complementary) inputs to flip-flop J where J 
is any alphabetical character 

sign of quantity within brackets is negative 

"don't care" condition 

flip-flop J is setting (Le., is undergoing "0" to "1" transition) or logical 
signal J is turning on (J is any alphabetical character) 

defined as aJ except signal is delayed by n7 units and J is in terms 
of positive logic 

angle p is being computed; 3 implies that angle Q is being computed 

flip-flop J is resetting (i.e., is undergoing "1" to "0" transition) o r  logical 
signal J is turning off (J is any alphabetical character) 

~b .- ... .. . .. . . .__ 



I6x1,16yl 1 increment of motion is occurring in x- or y-direction (without regard 
to its sense) 

7 unit of delay 

A bar over a symbol indicates the negation (or complement) of a variable. 

An underscore with a Boolean variable designates the positive logic convention; 
the absence of the underscore represents the more common negative logic convention. 

Logic Design 

AND (conjunction or intersection) 
(The dot may be omitted.) 

+ 

0 

* 
C 

(INCLUSIVE-)OR (disjunction or union) 

EXCLUSIVE- OR 

implication 

inclusion 

Boolean characterization 

(upper left line is input signal A; 
lower left line is input signal B; 
right line is output signal C) 

-D- AND 

-b- OR 

NAND serving as AND 3)- 
NAND serving as OR 3)- 

C = A B  

C = A + B  

- C = A B  

C = A + B  - -  
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I 

P 

gated pulse generator 

steering gate 

pulse delayer 

C = AaB - -  - 

C - C  
(No B input) 

flip-flop J where SJ, RJ, TJ a r e  set, reset, and trigger inputs 
and J, 5 are assertion and negation outputs, respectively 

GENERAL THEORETICAL CONSIDERATIONS 

In generating a curve from any input point a to the next point b with slope p 
at b (fig. l), I) (the angle of 
may be determined and eas- 
ily transformed to  a new 
(primed) coordinate system 
(fig. 2) whose origin is at b 
and whose X-axis is alined 
with p. The tangent angle 6' 
may then be determined from 
the simple relation @ '  = 21)' 
and easily transformed back 
to the original coordinates to 
guide the curve generation of 
one increment. The process 
may be iterated until point b 
is reached. (See appendix.) 

The relation 6' = 2I)' 
is a special case of 

@' =&I)' (1) 

b with respect to the presently generated position p) 

Y 

Figure 1.- Interpolated curve through input _ . A  points a, b, c, d, e. 

Y' 
A 

8 

Figure 2.- Portion of f igure 1 transformed to new 
coordinate system. 



which, for appropriate values of the parameter Q, is the equation of well-known geo- 
metric curves which go through the coordinate's origin at zero slope; for example, Q 
values of 1.5, 2.0, and 3.0 yield cardioids, circles, and lemniscates, respectively, where 
the size of these curves is determined by the initial point a. 

The subject controller's operation, which is based on the foregoing principles, is 
outlined and illustrated by an example in the next section. 

Computational Algorithms 

Point p of figure 1 is moved in finite steps from a to b along a path ending 
with slope p by use of the following algorithm: 

(1) Compute the direction angle I) of the vector pb. 

(2) Transform I) into I)', expressed in a new coordinate system centered at b 
and alined with p. 

(3) Compute @' = Qq' . 
(4) Inversely transform 4' into 4, expressed in the original coordinate system. 

(5) Use @ to predict the next increment of the curve, thereby establishing a 
new p. 

(6) Repeat steps (1) through (5) until p and b coincide. 

A step-by-step example of this simplified algorithm, in which it is assumed that 
(a) the coordinates of points a and b are, respectively, X a  = 3, Ya = 2 and 
Xb = 10, yb = 12, (b) for xa 5 xp < xb, p = 200 (for the computation of p, see p. 20), 
and (c) the desired curve is circular and hence Q = 2, is as follows: 

= tan-  ~ - l2 = 55O (since initially point p coincides with point a) (3 - 10) 
(2) I)' = I) - p (appendix) 

= 550 - 200 = 350 

(3) 4' = QI)' 
= 2(35O) = 70' 

(4) 4 = 4' + P 
= 70' + 20° = 90' 

(5) Since 4 = 90°, "increment" p one unit in the plus y-direction. 

(6) Since the new p does not yet coincide with b, return to step (1). 
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1 3 - 1 2  (1) rc/ = tan- - (3 - 10) = 520 . 
(2) rc/' = 52O - 20' = 32' 

(3) Cp' = 2(32O) = 64' 

(4) 

(5) Since the motion of an incremental orthogonal two-axis system is restricted to 
some multiple of 45' and since 90' is the closest multiple to 84O, again increment p 
one unit in the plus y-direction. However, simply to  ignore this 6' discrepancy and sim- 
ilar ones for the various increments of the path would result in the generation of an 
octagonal shape instead of the desired circular one. The problem is solved by integrating 
these discrepancies in accordance with the method developed in the section "Derivation 
of the Output Function" and summarized on page 17. 

Cp = 64' + 20' = 84' 

(6) Return to step (1). 

The foregoing procedure is repeated until p and b coincide, at which time the 
1 entire process is repeated for the next segment of the curve. In general, there will be 

a slope discontinuity at the beginning of each new segment of the curve; this condition is 
rectified by the method presented in the section "Merging Function Criteria." 

The algorithm is now refined with regard to the computation of rc/. The relation 
rc/ = tan-l(f(x,y)) is relatively difficult for machines to compute as seen in reference 4. 
Unfortunately, step (1) requires this computation for each increment of the curve. Alter- 
natively, however, the algorithm may be changed to utilize, instead, the more easily com- 
puted 6rc/, the finite change in rc/. The refined algorithm is as follows: 

(1) Compute the direction angle rc/ of the vector pb. 

(2) Transform IC/ into @'. 

(3) Compute @' = Qq'. 

(4) Transform 4' into @. 

(5) Increment p in accordance with @. 

(6) Compute 61) due to the movement of p. 

(7) Increment @ by Q 6@. 

(8) Repeat steps (5) through (8) until p and b coincide. 

The interpolated curve is composed of segments connecting adjacent data points, 
1 
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This algorithm is advantageous in that the slow computations of steps (1) through (4) 
are performed once, with only the fast operations of steps (5) through (8) iterated for 
each increment of the curve. 

Step (7) is based on the difference equation 

@k+l = @k + Q 6+k 

Since, by the fundamental difference definition 

@k+l = @k + 6@k 

it is necessary to  show only that 

6@k = Q 6+k 

By the invariance property of the linear transformation (appendix), 

6@k = 6@k 
By the fundamental definition, 

6@k = @k+1 - @k 

Again, by the fundamental definition, 

6@k = Q W'k 

Finally, by the invariance property, 

6@k = Q Wc/k 

Derivation of Output Function 

Step (5) of the refined algorithm requires that p be incremented "in accordance 
with @." The coarse 45' angular resolution inherent in the output of an incremental, 
orthogonal, two-axis system poses a problem, in this instance, since such a system must 
generate @, a function of considerably finer resolution. 

The problem is first approached in a precise manner. From this approach a com- 
plicated partial solution is obtained. Then applied is an approximation which yields a 
complete and greatly simplified solution without, for most applications, excessively 
degrading the results. 
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Figure 3 shows a magnified portion 
of the output grid on an incremental device, 
function, and so forth. Intersections of 
grid lines represent stable or  valid output 
locations, quantities, and so forth. 
Curve s represents the desired, com- 
puted, interpolated path or function where 
@ is the angle of the vector or direc- 
tional tangent2 to the curve. For  pur- 
poses of this discussion, the grid spacing 
is considered small enough with respect 
to the curvature of the path d@/ds to assume @ to be constant over the two incre- 
ments shown in figure 3. 

Figure 3.- Magnified portion of incremental output grid. 

Other parameters in figure 3 a r e  defined as follows: 

e desired motion angle necessary for coincidence with s at its next grid 
crossing 

BC actual motion angle 

difference angle defined implicitly by Of 

e = ec + ef 

where ec and Of may be construed as coarse and fine components of e and are sub- 
ject to the two following constraints: 

and 

-22.50 s ef < 22.50 

P, Y predicted and corrected e r ro r  distances, respectively, between grid corners 
and s-curve-grid-line intersection 

k- l,k,k+l subscripts denoting order of the motion increments 

2The tangent is not the usual scalar tangent since the direction or  sense in which 
the interpolated curve is generated affects @ - that is, i f  the sense of generation is 
reversed, then @ is rotated by 180'. 



The solution proceeds as follows: pk+l, the e r ro r  distance which would result if 
the motion continued in the direction of Oc,k- 1, is calculated. If I pk+l I = < 0 .5  incre- 
ment, then 

'c,k = 'c,k- 1 

and 

rk+l = pk+l 

If Ipk+ll > 0.5 increment, then 

'c,k = 'c,k-l f 450  

and 

?/k+l = pk+l * 
With the aid of figure 3, the procedure may be formulated for -45' 5 'c,k-l 5 - 450  as 

(3) pk+l = ?/k + tan @k - tan 'c,k-1 

'c,k = 'c,k-l + I 

where 

I[] is defined as 
necessary, when 

the greatest integer in quantity within the brackets, and tan Bc,k-l is 
Bc,k-1 = &5O. 

The foregoing formulation will be used in the derivation of equation (7); first, how- 
ever, it is necessary to establish the relationship between p and Of. Figure 3 shows 
that p may be expressed also,as 
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For e 
take place when 

= 0, equation (4) reduces to pk+l = tan e,,,. Hence, a change in e c,k c,k 
should 

For e = +45O, equation (5) reduces to 
c,k 

cos 2 ef k + 2 cos ef k sin ef k + sin 2 ef k 
- 9 9 7 9 - 

2 
f , k 

cos e - sin20 
f, k 

1 + 2 cos Of k sin Of k 1 + sin 20f 

f , k 
9 - 7 - - - 

2 COS 2e 1 - 2 sin 8 
f , k 

(6) f,k 
= sec 28 + t an28  

pk+l f, k 

Although the inverse ef, k(pk+l) is more complicated,. it is easily seen by substitu- 
tion that a change in 0 should occur when 

c,k 

> (45' - 26.6' = 18.4') 

that is, when 0 < -18.4'. 
f , k 

Finally, for e = -45O, equation (5) reduces to 

-1 + tan Of k 

f,k 

c,k 

= 1 + tan e ' 

Following the foregoing procedure results in 

pk+l = tan 2ef,, - sec 28 
f,k 

and, hence, a change in 8 should occur when 8 > +18.4'. 

Even considering only these limited cases, the pk+1 function is relatively com- 
c,k f , k 

plicated. To assist in the application of a reasonable approximation, the function is dis- 
played, with the aid of figure 4, in figure 5. It is noted that to  implement p accurately 
requires the use of one complicated function if OC = Oo and another complicated function 
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Figure4.- Error angle Of for various error distances p.  

if 
problem since 

eC = d 5 c .  The approximation shown in figure 5, however, greatly simplifies the 

(1) It is linear and thus is simply p = C8f where C is the proportionality 
constant . 

(2) The same function is applied for both conditions of 8,. 

(3) Its linearity enables the application of the following superposition property for 
p(8):  p (el) + ~ ( 8 2 )  = p( 8 1  + 82). Note further that C vanishes when Of is measured 
in octants (1 octant = 450) and p in increments - that is, p = Of. 

(4) It avoids the problem of large tangents and, therefore, can be used throughout 
the entire 360'. 

The penalty for using this approximation is exhibited in the digital computer simu- 
lation of reference 4, appendix C, where the attempted difficult task of generating a circle 
through two points and one slope resulted in four sides slightly flattened. For normal 
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Figure 5.- Relation between actual and approximate error angle Of and error distance p .  

curve interpolation tasks, however, this slight tendency to flatten is insignificant. 
implementation, therefore, is based on the use of this approximation. 

The 

In effect, then, the approximation establishes an equivalence relation between 
angular dimensions at pk of figure 3 and linear dimensions at the 
crossing, so that the tangent functions a r e  eliminated and thereby the useful angular 
domains a r e  extended throughout the entire 360°. Implicit in the relationship p = Of is 
the corrected form y = Of (where the constraints of equation (2) have been applied to 
the latter Of). Hence equation (3) can be written as 

pk+l increment 

'f,k = 'f,k-l + @k - 'c,k-l (7) 

where the constraints of equation (2) are not yet applied to Of,k. By updating the 
subscripts 

'f,k+l = 'f,k + @k - 'c,k (8 )  
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where, as assumed, @k+l = Cpk' Therefore, 

Integrating finitely (ref. 7) gives 

k- 1 
P 

'f,k = 'f,O + 2 6ef,j 
j=O 

where j is a dummy variable. By letting the initial condition 0 = 0, 
f,O 

k- 1 

ef,k= 2 E j  
j=O 

(9) 

where E j  = 68f,j = 4. - 8c,j, the e r ro r  between the tangent angle of curve s and the 
actual motion angle. Hence equation (2) can be written 

J 

When 1 E j exceeds the constraints of equation (2), 1 or more octants are transferred 

from 2 E j to BC. Equation (9) is a most important result since step (5) of the refined 

algorithm can now be stated explicitly: 

(1) Determine 8 for each point pk along the generated path by finitely inte- 
f,k 

grating or  summing the e r ro r  ~j from initial = 0 to ~ k - ~ ,  continually applying 
the constraints associated with equation (2). 

(2) Use equation (2) and associated constraints to establish e for each 
c,k 

point pk' 

(3) Generate the path in the direction of ec,k' 

Thus, ~j as previously defined represents the e r ro r  introduced at the jth step 
because the actual direction of travel 8,,j differs from the computed direction @j. 

, the finite integral of this e r ro r  integrated from an input data point po Whenever 

to  the previous generated point pk-l, exceeds 22- , it applies to a 4 5 O  correction 
which, in general, is an overcorrection, in which case E j changes sign and 8 builds 
up in the opposite sense. Hence the actual path (controlled by 8,) continually seeks and, 
in general, follows the computed path (controlled by 

lo 
2 c,k 

Pf,kI 
8 

f ,k 

@) to within 0.5 increment. In 
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t e rms  of the CalComp digital incremental recorder model 565 that was used in this 
research, this 0.5 increment represents an e r r o r  of 0.005 inch, a distance approximately 
as small as the plotted curve thickness. 

The beauty of this formulation is that it is easily implemented. 

Merging Function Criterion 

In generating a curve from point a to point b, the refined algorithm of page 10 
gives no consideration to the angle at which the curve originally entered a. In general, 
disregard of this angle results in derivative discontinuities at the various input data 
points of a curve. 

To obviate this problem, a merging function is derived which effects a smooth 
derivative transition from the curve entering some point to the curve leaving this point 
by limiting d@/ds, the curvature of the path in the vicinity of the point. The particular 
merging function criterion which is implemented may be considered to be circular since 
it limits d@/ds to the d@/ds of a circle whose diameter is equal to the distance 
between the present position p and the next data point. 
u re  6 d@/ds is constant over the path s; hence, 

For the circle shown in fig- 

(10) 2 radians 2 radians 3 -  - 2nradians - - -  5 -  
ds n% increments % increment - dp increment 

If d@/ds is limited to 2/% for an interpolated path, the merging function gives, in 
general, (1) a smooth transition, and (2) complete merging before p coincides with b. 

Although other merging criteria could have 

it is a simple function of dp, the square of which 
is already computed by the experimental hardware 
for other purposes. 

been used, this particular one is attractive since b 

The merging function is shown in figure 7 as 
the limiting d@/ds plotted against dp. Limiting 
d@/ds is given in radians per increment and n 
radians per increment where ln radian = n radians. 
The implementation described in the section 
"Operations of the Experimental Model" is based 
on an approximation to this function. 

Figure 6.- Circular criterion for merging 
function. 
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Figure 7.- Merging function. 

Computation of p 

500 1000 

The development of the theory is based on the hypothesis that the slope angle p 
of figure 1 is given. An examination of this hypothesis is now made. 

In general, a unique accurate slope angle p does not exist since the input points 
do not specify the curve in the immediate neighborhood of point b - that is, in digital 
terms, the input points do not specify the increments immediately preceding and following 
point b. Therefore, the slope assigned to point b is a function of the particular 
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interpolation scheme used. On the assumptions that sufficient input points are given to 
faithfully represent the function and that point b lies in the middle 50-percent region 

1 of the distance between a and c or, more precisely, - < h < 3, where h is the ratio 
of the distance ab to the distance ac , then the simple first difference definition of 

( 3 

is, in general, adequate as is seen by examining the geometry of various three-point 
patterns. 

Equivalence of Angles 

Physically I), @, p, and so forth, can range only over 2a radians. Hence, 
physical significance is extended to those values outside of range by letting the equiva- 
lence relation 

qc/2 

mean q1 = q2 + 2aK for some integer K (Le., ql = q2(mod 2 a)> . 
Principal Range of Angles 

With the aid of the foregoing equivalence relation, IC/' in any range may be con- 
verted to its principal range defined as 

-a 5 q' < +a 

The important relation @ '  = w' tacitly assumes that q' is expressed in its principal 
range. However, it is shown in the following theorem that this requirement is really not 
a necessary condition when Q is an integer; that is, for the relation 4 '  = QG' equiv- 
alent angles @' are obtained for equivalent angles Q' when Q is an integer. 

Theorem: Under the relations 

$1 = 

$2 = Qq2 
q2 = ql(mod m) where m is any real number, 

if Q is an integer then @2 @l(mod m). 

Proof: (1) q2 ql(mod m), by hypothesis. 

(2) q2 = + mK, by the equivalence definition. 

(3) G2 = Qq2, by hypothesis. 
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(4) @2 = Q(Q1 + mK), bY steps (2) and (3)- 

(5) G2 = @.l + mKQ, by hypothesis. 

(6) Q is an integer, by hypothesis. 

(7) KQ is an integer, since the product of two integers is an integer. 

(8) Therefore @2 @l(mod m), by steps (5) and (7) and the equivalence 
definition. 

The converse is not true. However, an important fact concerning the converse is 
stated in the following corollary to  the theorem. 

Corollary: Under the relations of the theorem, the equivalence of @1 and G2 

This corollary is a consequence of step (7) of the theorem proof; that is, although 
specific cases can be found in which KQ is an integer for a noninteger value of Q, an 
integer product is assured only if both K and Q a r e  integers. 

is guaranteed only if Q is an integer. 

These considerations - angular equivalence, principal range, and integer values 
Their signifi- of Q - a re  extremely important in terms of hardware implementation. 

cance will be briefly mentioned so that they can be more fully appreciated when the actual 
design of the experimental model is presented in a subsequent section. 

The angle equivalence relation 

q2 Ql(mod 27r) 

implies that the hardware need not distinguish angles which differ by integral multiples 
of 27r. 
handle precisely the modulus 27r range and, hence, bit positions of weight P27r need 
not be provided even though the angle may exceed 27r. 

Therefore the associated counters, registers, and so forth, a r e  required to 

The theorem essentially states that the complication associated with the principal 
range constraint can be avoided if one is satisfied with interpolated curves involving only 
integer values of Q - that is, Q = 1, the linear case, Q = 2, the circular case, and so 
forth. Utilizing only integer values of Q would greatly simplify the system control 
problem and could eliminate the binary rate multiplier in the design of the experimental 
model. The importance of noninteger Q in a practical operational device can best be 
established through operational experience. The more complicated noninteger Q capa- 
bility is therefore retained in the model design so that some measure of its importance 
may be acquired through use of the experimental device. 
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COMPUTATION OF + 
Perhaps the most important single 

function to be performed in the interpo- 
lation scheme is the computation of 

+ = tan- 1 9  
Ax 

or, if one of the points is at the origin 
as in figure 8, 

Thus, with a suitable a rc  tangent algo- 
rithm, + can be computed absolutely. 
Such a computation with digital devices, 

Y. 

however, is complicated and time con- 
suming relative to the more common 
algebraic manipulations. (See ref. 4.) Fortunately, in the present application an absolute 
computation is not, in general, required or desired because, once + has been estab- 
lished for two data points, a and b, it is necessary only to add the incremental change 
in + as the curve "stepsTt (with perhaps 100 increments) from point a to  point b. 
To determine the incremental change d+ in +(dx,dy), proceed as follows: 

Figure 8.- Effect of 6x and 6y on &. 

tan + = 
X 

d(tan +) = d g )  

2 X d Y - Y b  
2 sec + d+ = 

X 

and, therefore, 

Thus, for each infinitesimal change in x and/or y, the resulting change d+ can be 
computed. Furthermore, this change can be integrated over some path to obtain the total 
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angle + . Independence of path, singularities, and other considerations of rigor are 
shown in advanced calculus texts (e.g., ref. 8). 

Unfortunately, the present application involves finite changes, to be denoted by 6x, 
To combat the truncation e r ro r s  6y, 

caused by the finite integration process, a finite differential or difference is derived as 
follows: 

6+, and so forth, instead of infinitesimal changes. 

Y-=tan+ X 

and, hence, 

tan Q + tan 6Q -- 
1 - tan + tan 6+ 

+ w- tan(+ + 6+) = 
x + 6x 

Cross multiplying gives 

xy + x 6y - (y + 6y)y tan SlF/ = xy + y 6x + (x + 6x)x tan 6* 

and, hence, 

tan 6+(x(x + 6x) + y(y + 6y)) = x 6y - y 6x 

When 6lF/ is small, 

By applying lim tan 61) = 61) and lim (x + 6x) = x, equation (12) reduces to 
6x-0 6x-0 
6y-0 

x 6y - y 6x 
6+ = which, as might be expected, is the infinitesimal case. 

x2 + y2 

Equation (12) can also be 'written as 

which shows that in the denominator of the finite case, both the present (kth) value and 
the next ((k + 1)th) value of the independent variables are used. 

Equation (13) forms the basis of the experimental model design. Its implementa- 
tion is best understood by first considering equation (11) in terms of some of the better 
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known digital differential analyzer (DDA) techniques (refs. 9 and 10). Accordingly, the 
notation of figure 9 is interpreted as follows: 

dY pulse representing a small, constant increment of y(x), which is counted into 
(integrated by) register Y 

dx pulse representing a small, constant increment of x, which causes y(x) to 
be accumulated into an internal register R (fig. 10) 

dz pulse representing a small, constant increment of function z (dz is 
emitted when R overflows) 

Function z may therefore be obtained by counting the dz pulses - that is, 

b 
z = Jab dz = Ia y dx 

This rectangular integration process is displayed in figure 11. 

One DDA approach to the implementation of equation (11) is the servo technique 
which follows. Rearranging this equation gives 

0 = x dy  - y d x  - (x2 + y2)dQ (14) 

In general, if there is a change in x and/or 
y, equation (14) is no longer equal to zero but 
is equal to some unbalanced er ror  u. This 
e r ro r  can be nulled (i.e., caused to approach 
zero) by the generation of proper polarity 
dQ increments. Equation (14) can therefore 
be written 

If the basic integrator of figure 9 and a few 
additional symbols a r e  used, the configura- 
tion of figure 12 is evolved as the imple- 
mentation of equation (15). 
notation shown in figure 12 is as follows: 

The additional 

Figure 9.- Conventional DDA integrator notation. 

dz 
R ACCUMULATOR 

I 

I 
Figure 10.- Mechanization of figure 9. 
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U 

Area represented 
by one dz pulse . . . .  . . . .  . . . .  . . . .  . . . .  . . . . .  . . . . *  

. . . . .  . . . . -  . . . - _  . . . . .  . . . I -  . . . . *  
1 - . . .  . . . - .  
I . _ . .  
I . * . _  . - . . *  
C . . * *  
. a _ . .  . . * . .  
. . L L .  
L a . . *  
- 1 . . *  
- I - - .  

X 
I a b 

Figure 11.- Rectangular integration of y(x). 

d x  t 

Figure 12.- Symbolic implementation of equation (15). 

a bidirectional counter called a summer whose input is time shared by three 
sources which appear as te rms  in equation (15) 

indicates that y dx and (x2 + y2)dq are subtracted; its function may be 
considered that of reversing the counting direction of o 
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x2 

pulse generator controlled by the output of u (The trivalued output (+, -, 0)  
causes the generation of +IC/ increments, -IC/ increments, and no 
increments, respectively . ) 

signifies that the input is multiplied by 2 as it enters the counter (If the 
counter is binary, then this 'multiplication is accomplished simply by 
connecting the input to the next most significant stage.) 

The additional input to the interior integrator is time shared with its normal input. 

With further extensions of the notation, equation (13) may be represented by fig- 
ure  13. 
in addition to the usual kth output at one head, both kth and (k + 1)th values at the second 
head. Note from the figure that the top input to the integrator goes with the top output 
and the bottom input goes with the bottom output. 

The only new symbol which appears is the double-headed integrator which emits, 

That the second head can satisfy equation (13) is seen as follows. At the end of the 
kth computation, assume that 

2 2  D = x  + y k  k 

Assume that x changes 1 increment - that is, 6x = 4. Let this change cause, at 
first, only the kth value to be emitted from the second head. Then, 

D = xk 2 2  yk + Xk6X 

2 = x  x + 6 x  + y k  k ( k  ) 
2 

= xkxk+l + yk 

Figure 13.- Symbolic implementation of equation (13). 
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Since there was  no change in y, yk+l = yk and hence yk 2 = ykyk+l. Therefore, 

as required by equation (13). At the end of the computation, the remaining (k + 1)th 
value is emitted so that 

= xkxk+l + ykyk+l + xk+16x 

Again, since there was no change in y, yk = yk+l and hence YkYk+l = Yk+l. There- 

fore, at the completion of the (k + 1)th computation, 

2 
= Xk+l(Xk + 6x) + yk+l 

- 2 
- xk+lxk+l + yk+l 

- 2  2 
- Xk+l + yk+l 

a result compatible with the assumption of equation (16). An analogous situation occurs, 
of course, for a change in y. 

Figure 11 shows that the quantity represented by one dz increment is relatively 
large. This large resolution of dz is necessary to insure that no more than one dz 
pulse is emitted for  any integration step. Since the quantity represented by dz is 

Ymax 
2 

ym,dx, 1 dz c a n b e i n  e r ro r  by f 

tate the design of the double-headed integrator, the following significant breaks with 
convention a re  incorporated in the implementation of figure 13: 

dx . To eliminate this e r ror  and to facili- 

(1) The integrators contain no R accumulators. 
(2) The integrators contain input accumulators instead of input counters; this 

change permits, of course, the acceptance of quantized data instead of the conventional 
single pulses. 

(3) The summer labeled u in figure 12 accepts quantized information instead of 
the conventional single pulses. 

Thus, in the conventional diagram of figure 12, all interconnecting lines “carryrv 
single pulses, whereas in figure 13 all interconnecting lines, except those labeled 6x, 
6y, and SQ, %arry” quantized information. 

over various paths, a digital computer program was written. Results obtained from use 
of this program indicated that, in general, the accuracy was well within the requirements 
of the present application. For program details, see reference 4. 

In order to check the e r ro r s  associated with equation (13) as + is integrated 

27 



OPERATIONS OF THE EXPERIMENTAL MODEL 

6 

Flexo- Tape L 

J 

writer reader 

Coded tape -1 

General Description of Model 

As indicated in the system block diagram of figure 14 and the photograph of 
figure 15, the input to the experimental model is paper tape, coded in the format of 
table I by a Flexowriter. The model's output device is a standard CalComp digital 
incremental recorder. 

I 
N 
T .__L 

R 
0 

CalComp 
recorder 

Figure 14.- Simplified diagram of the experimental model. 

28 Figure 15.- Front view of the experimental model. L-65-2370 



TABLE 1.- TAPE FORMAT 

2 -- 1 IDeteetion. code 

* 04 
* 84 

OC124 
oc 

- --- 

XE 

* 
* 
* *  

* 
* 
* *  

* 
- ~- 

-Tape motion 

I Sm-J jXXREI  
- _ _ _ -  - -  -- 

x-data y-data 

- 

E * * *  * 
None * * * * 
None * 

* * *  

(0 * 
1 
2 
3 * 
4 * 

( 5  * *  
* *  6 

7 * 
8 * 

,9 * *  
- - - - __ 

~ 

End of data 
Carriage return 
Space 

Sign digit 

BCD digit 

E 
R 
A 

S 

X 

The controller is referred to as INTROL, an abbreviation for higher order interpo- 
lation controller and, for the model, is totally contained within the relay rack in figure 15. 
It is implemented with the Computer Control Company l-Mc S-PAC digital modules in 
which up to 28 logic cards a r e  inserted in each of the 5-- inch S-BLOCS seen in the 
photograph. 

1 
4 

In general, the mission of INTROL is to accept input data points (similar to those 
of fig. 1) and direct the motion of the recorder along a smooth path (similar to the path i n  
the fig.) through the points. The hardware which performs this operation is diagramed 
in figure 16. 

The box labeled "input data" at the top of the figure represents the tape reader o r  
manual data entry switches which read input data into RC. When a new data point is 
required, as indicated when D = 0, the point is gated by block G1 into RC and the orig- 
inal contents of RC is shifted into RB and those of RB into RA. Switch 1 signifies 
that A1 can read the contents of any of the three registers as required for computing 
first differences necessary in the computation of a rc  tangents. 
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REGISTER A 

Al Im 
ACCUMLTLATOR * 

I ‘ I  

I 
I “  

Figure 16.- Functional diagram of experimental model. 

The block labeled “+computer” represents the computer previously shown in fig- 
u re  13 with the addition of a binary rate multiplier; it should be viewed now simply as a 
block in which 6x and 6y increments a r e  applied and the resulting angular change A@ 
is emitted. ’ The D output, where D is the square of the distance to the next point, is 
used not only in the computation of A@ but also by the merging logic to establish the 
instantaneous merging rate. Blocks C2, C3, and C4 a r e  counters; C4 counts in accord- 
ance with the constraints associated with equation (2). The direction of &, whose reso- 
lution is 450, is interpreted by the theta decoder block in terms of 6x and 6y compo- 
nents. These 6x and 6y increments drive the CalComp recorder and are fed back to 
the $-computer for determining their effect on @ and D. Block G2 is used to preset 
(C3) to -0, as an initialization, where (C3) means the quantity in C3. 
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Simplified Operations of Model 

An operations algorithm of the experimental model is displayed in figure 17 in the 
form of a flow chart. Although considerable detail is omitted, the chart expands the 
refined algorithm given in the section "General Theoretical Considerations" to include 
the operations involved with the output and merging functions subsequently developed in 
that section. 

1 SHIFT DATA IN REGISTERS A, B, C 40 ANDREADNEW" 

Figure 17.- Simplified operations flow chart of experimental model. 
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The operations algorithm for the hardware of figure 16, which is indexed with the 
numbered boxes of the flow chart of figure 17, is as follows (assume that the curve in 
fig. 1 has been generated up to  point a and that signal D therefore has been reduced 
to  zero): 

@ Shift data from RB to  RA andfrom RC to RB and r eadanew point of 
(The points a r e  plane Cartesian and hence the registers and input the curve into RC. 

accumulator A1 are actually implemented in x-y pairs.) 

@ Reset C1 and C2 and A1 and A3; preset  (C3) to -8c. 

@ Switch A1 first to  RA and then to RC to accumulate (Alx) = xa - xc 
and (Aly) = Ya - yc. 

@ Integrate, with C1 which is internal to the +-computer, 6+ over some path 

to obtain - p =  -tan- - Simultaneously, multiply the same 6+ pulses by 

- in the binary rate multiplier and then integrate with C3. (Thus, 

(C3) = -p(Q - 1) - Bc expressed in a  radian^.^ That the binary rate multiplier gives 
the desired result can be seen in step @.) 

(Alx)' 

a 

@ After resetting AI, accumulate (Alx) = X a  - xb and (Aly) = Ya - yb. 

&!.d by integrating, without reset, @ Determine, with the +-computer, tan- 
(AW 

the associated 6+ pulses in C1, making (Cl) = - p  + + = +'. Simultaneously, multiply 
these 6+ pulses by Q/a in the binary rate multiplier and integrate the product in C3, 
making 

(C3) = Q+ - P(Q - 1) - 0, 

= Q(Q - P )  + P - Qc 

= Q + ' + p -  Oc 

= @ ' + p -  ec 
= + e ,  
= @ -  QC@ 

where ec@ = Bc initially (i.e., the slope associated with point a) and Qc@ = @ after 
merging is complete, at which time (C3) = 0. 
subsequent flow chart, is used to constrain +' to its principal range (p. 20).) 

(Cl, which contains Q' , as is shown in a 

3The conversion from radians to 7~ radians simplifies the theta decode logic. It 
also keeps the multiplying factor Q/a less than unity (for Q < a) as required by the 
binary rate multiplier. 
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@ For merging, reduce IC31 by AOC@ = f((A3),S[C3]), where (A3) = D is, 
again, the measure of the distance to the next point. Simultaneously, change (C2) by the 
amount of hecCp. (Note that (C2) = OCCp - Oc = E ,  where, as previously explained, 
merges in amounts of A 6  from Oc to Cp and hence E changes from zero to  
Cp - &, the difference between the computed direction angle Cp and the actual 45' reso- 
lution angle of motion 8,. 

Cp 
CCp 

) 
@ With C4, integrate the error E contained in C2 as required by equation (9). 

If a change in the coarse portion of C4, 
into C2 so as to  update its Oc. 

6(C4c) = 6&, occurs, feed this change back 

@ Since, during the first traversion of the major loop, 

@ With the theta decoder, resolve 

0 Using the bipolar pulses representing the 6x and Sy increments, step the 

@ Since merging would not normally be complete (i.e., 

@ Change (C3) by A$ = & A + ,  where A + =  C6+ for agiven 6x or 6y 

@ If merging is complete in step @ (i.e., 

(A3) # 0, proceed. 

Oc into the two orthogonal increments 6x 
and 6y. 

CalComp recorder and increment the +-computer (so that it updates + and D). 

(C3) f 0), proceed. 

increment, and then enter the major loop at step 0. 

and then enter the major loop at step @. 
Eventually the test at step @,will show 
step @ is repeated. 

(C3) = 0, change (C2) by &A+ 

(A3) = 0 at which time the entire operation from 

Detailed Operations of Model 

The complete operation of the experimental model consists of the following 
programs : 

(1) +-computer subroutine 

(2) main program 

(3) input program 

The +computer subroutine is called only by the main program. The input program 
runs simultaneously with the main program except for an interlock flip-flop designated G. 
The main program requests a new data point from the input program by setting G. After 
making the new point available, the input program resets G. After using the point, the 
main program again sets G, and so forth. 
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+-computer subroutine.- The +-computer, which now includes a binary rate multi- 
plier, is treated by the main program as a subroutine (fig. 18). It is called with the 
statement: 

Call +-comp (6x,6y); A@) where 6x,6y increments are input arguments and 
A@ = Z6@, an output argument, is the total change in 4 resulting from a 6x and/or 
6y ' increment. 

actually exist - that is, there is no register which contains A@ = Z6@. Instead, C2 
and C3 actually utilize the individual 6@ pulses. The actual representation, however, 
would require a transfer between the main program and the subroutine for every 6@ 
pulse iteration. Fortunately, this complication is eliminated by the fictitious A@ 
accumulator. 

The quantity A@, which appears also in figure 16, is a convenience and does not 

Although it is not explicit in the subroutine call statement, the main and subroutine 
programs can each sample the other's quantities, registers, and so forth. 

Figure 18.- Symbolic implementation of +computer of model. 

The +-computer subroutine flow chart of figure 19 should be used in conjunction 
with the +-computer block diagram of figure 18 which is almost the same as that of fig- 
ure  13. In the following explanation of the subroutine flow chart, the numbered explana- 
tion steps a re  indexed with the numerals at the flow chart blocks: 
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@ Reset the fictitious A 4  accumulator. 

@ If Idyl = 1 and 16x1 = 0, proceed. 

@ Reset flip-flop V. (Flip-flop V then causes computer to operate on by.) 

@ Accumulate in A3 the product of (A2y) and 6y. 
Accumulate in A4 the product of (A2x) and 6y. 
Accumulate in A2y the 6y increment. 

@ Reset 6y. 

@ If, in step 0, 
analogous manner to steps'@, @, and 0. 

@ If, in step 0, 
go to step @; if v is set, go to step 0. 

@ If (A4) # 0, proceed. 

0 Assign the sign of (A4) to 61). 

0 Accumulate in A4 the negative of the product of SQ and (A3). 

@ If flip-flop p is set, proceed. 

@ "Decrement" (See step @ on p. 32.) 

@ If, in step 8, p = 0, which signifies that Q is being computed, increment 

@ Accumulate in the fictitious A$ accumulator the product F 6I). 

0 If (A4) = 0, proceed with step 0. If V = 1, proceed. 

@ Compute AA3 = xk+16x. 

@ Accumulate AA3 into (A3). Go to step 0. 
@ If, in step 0, V = 0, compute AA3 = yk+16y. Go to step 8. 
@ If 16yl = 0 and 16x1 = 0, return to the main program. 

16y I = 0 and 16x1 = 1, proceed with steps @, 0, and @ in an 

16yl = 1 and 16x1 = 1, proceed with step 8. If V is reset, 

(p = 1 signifies that angle p is being 
computed. ) 

(Cl) by 6Q and set F = -(Q - l)/r.  

(Cl) by SI) and set F = Q/r.  (See step @ on p. 32.) 

step @. 
Go to 
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(Ab) = ( A h )  - 6@(A3)' 

Figure 19.- &-computer subroutine flow chart. 
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Main program.- An appreciation of the procedure used in integrating + is helpful 
in understanding the main program flow chart. Recall from equation (12) that it is 
important to keep the change in + small for incremental changes in x and y. Also, 
the angle + in figure 20 may be integrated by jumping from the origin to point m and 
then integrating to point a as was done in reference 4. This jumping avoids the singu- 
larity (ref. 8 )  at the origin, saves integration time, and is permissible since the path 
from 0 to m has no effect on +. In terms of the hardware of the experimental model, 
this jumping presents a problem since (A3) of the +-computer must be preset to the 
product xg, a quantity which, in general, is unknown. Hence, the design of the experi- 
mental model is based on the following integration procedure: 

(1) Jump exactly 12 increments in the negative x-direction. 

(2) Integrate 12 increments in y in the direction of the data point (i.e., point a 
in fig. 20). 

(3) Integrate along the x-direction toward the point until its x-coordinate is reached. 

(4) Integrate along the y-direction toward the point until its y-coordinate (and hence 
the point) is reached. 

always to 122 = 144, and keeps the changes in + small. 
Such a procedure avoids the singularity at the origin, permits presetting (A3) 

m 

Y 

Figure 20.- Integration of angle #. 
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To detect when the coordinates of the point are reached as required for steps @ 
and @) in the integration procedure, (Alx) is decremented for each step in the 
x-direction and (Aly) is decremented for each step in the y-direction. A coordinate 
of the point is reached therefore when the associated accumulator reaches zero. 

The main program flow chart of figure 21 should be used in conjunction with the 
experimental model hardware of figure 16. In the following explanation of the main pro- 
gram flow chart, the numbered explanation steps are indexed with the numerals appearing 
at the flow chart blocks: 

0 Select the desired type of trajectory with switch Q. Set recorder to initial 
position, lower pen, insert paper tape, and so forth; push start. 

@ Reset C3 and flip-flop L; preset U to 1 and set flip-flop G. (Flip-flop G 

@ If G =  1, proceed. 

@ If end of data character E has not been read on tape, go to step 0. 
@ If, in step 0, G = 0, which signifies RA, RB, and RC are filled, proceed 

@ Increment U. 

@ Set G; go to step 0. 
@ If, in step 0, U = 3, reset C1 and A1 and set flip-flop 0. 
@ Preset (Alx) to 12. (See step 0 of integration procedure.) Accumulate 

interlocks the main and input programs which otherwise operate independently.) 

with step 0. If U < 3, proceed. 

(RAx) and -(RCx) so that (Alx) = xa - xc + 12. 

@ Accumulate (RAY) and -(RCy) 

@ Reset A2, A3, and A4. 

0 Preset (A2x) to -12 and (A3) to x: = 122 = 144. (A2x and A3 are a 
part of the @-computer as shown in fig. 19. For an explanation of presetting to -12, 
see step @ of integration precedure.) 

so that (Aly) = Ya - yc. 

@ If (Aly) = Ya - yc is negative, proceed. 

@ Set 6y = -1 and 6x = 0. Go to step @. 
@ Set J to I. GO to step 0. 
@ If, in step 0, (Aly) is positive, set 6y = +1 and 6x = 0. Go to step 0. 
0 Decrement (Aly) by 6y and call IC/-comp (6x,6y; A+). (The @-computer 

begins the integration of p.) 
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@ Increment (C3) by the @-computed A@ = Z6@. 

@ Repeat steps 0 and @ eleven more times. (See step (2) of integration 

@ If (Alx) is negative, proceed. 

@ Set 6x = -1 and 6y = 0. 

@ Decrement (Alx) by 6x and call @-comp (6x,6y; A@). Go to step @. 
@ If, in step @, (Alx) is zero, set 6x = +1 and 6y = 0. Go to step @ . 
@ Increment (C3) by A@. 

@ through @ Treat in analogous manner to steps @ through @ . (Integra- 

@ If, in step @, 
@ Reset flip-flop p, which signifies that @ is to be computed. 

@ Preset (Alx) to -12. Accumulate (RAx) and -(RBx) so  that 

@ Accumulate ( M y )  and - ( m y )  so that (Aly) = Ya - yb. Go to step 0. 
@ H, in step @, flip-flop p is reset, set flip-flop G. 

@ If IC11 > 7r, which signifies that @' is not in its principal range, proceed. 

@ Set J to 402. (Note that since the weight of one 6@ pulse is '2-6 radian, 
402 6@ pulses represent 27r radians. Therefore, 402 pulses (or integral multiples 
thereof) are used to bring @' within its principal range. 4 = (C3) is changed 
accordingly .) 

procedure.) 

tion of p is complete.) 

(Aly) is zero, proceed with step @. If p = 1, proceed. 

Although 
redundant, reset  Al .  

(Alx) = Xa - xb + 12. 

(CI now contains 
- p  + @ = @', the transformed angle.) 

@J If (Cl) is negative, proceed. 

@ Give 6@ a negative sign. 

@ If J > 0, go to step @ ; otherwise, go to step @ . 
@ If, in step 8, (CI) is positive, give S@ a positive sign. GO to step 8. 
@ If, in step @, 
@ Decrement J. Go to step @. 
@ If, in step @, 

J > 0, add 6@ to (Cl) and F 61) to (C3). 

IC11 5 7r, proceed with step @. If U 2 3, proceed. 
(Q' = (Cl) has been computed and confined to its principal range and 
in C3.) 

@ is contained 
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@ Set the coarse portion of (C4) equal to the coarse portion of (C3). Reset 
(C3c), leaving (C3) = @ - Bc. (Before the first portion of the curve is plotted, a reason- 
able initialization should be assigned to (C4;), the slope of the curve at the first point.) 

@ Reset C2. 

@ If (A3) > 0, proceed. 

0 Decode (C4c) into its 6x and Sy components. 

@ Increment the recorder with 6x and Sy. 

@ Increment the +-computer with 6x and 6y. 

@ If (C3) f 0, proceed. 

@ Increment (C3) by A @  = Z6@ from the +-computer. 

@ Increment (C2) by ABc@ = f((A3),S[C3]), the merging quantity obtained from 

@ If (C3) changes sign, proceed. 

@J If (C3) # 0, proceed. 

@ Decrement (C2) and increment (C3) by 7r2-6 with a sign identical to 
s[c~]. GO to step @ . 

@) If, in step @, (C3) = 0, proceed with step a. 
If, in step @, (C3) changes sign, proceed with step @ . 
Increment (C4) by (C2) and decrement (C2) by the amount of the change 

the +-computer. Decrement (C3) by ABc@. 

in ( ~ 4 c ) .  to step @. 
@ If, in step @, 
@ If, in step @, 

@ If, in step @, end of data character has been read on tape, proceed with 

@ Set Z = 1. Go to step @. 

@ If, in  step @, 

(C3) = 0, increment (C2) by A@. Go to step @. 
(A3) = 0, preset (C3) = -(C4c). Go to step @ to interpolate 

the next segment of the curve. 

step @. If Z = 0, proceed. 

Z = 1, stop the operation since the complete curve is now 
drawn. (Note that step @ is equivalent to reading the last point twice.) 
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Figure 21.- Main program flow chart for model. 
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(A21 = (A3) = (Ah) = O[ 

(A2x) = -12; (A3) = 144 1 
I 

@I 

Figure 21.- Continued. 
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Figure 21.- Continued. 
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4 go 
5 6 7  

7 L 
5x = 1; sy = -11 

RECORDER (5x,5y) @c7 

Figure 21.- Concluded. 
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Input program.- The input program as previously indicated operates independently 
of the main program except for the interlock flip-flop G which, when set  by the main 
program, starts the input program. The flow chart of figure 22 should be used in con- 
junction with the input diagram of figure 23 and the tape format of table I. The following 
flow-chart explanation steps a r e  indexed with the numerals appearing in the blocks on the 
flow chart: 

0 If G = 0, wait; if G = 1, which signifies that the main program has requested 
data, proceed. 

@ If model is operating in manual entry mode (i.e., not in the paper tape input 
mode), proceed. 

LINEARLY SHIFT 
RA, RB, RC 

. 

1 
J = J + 1  S C O M P L ~  

0 I 
~- ~ 

SHIFT RT, RA, RB, RC 
~- _ _  

- 

Figure 22.- Input program flow chart of model. 
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@ Set data point into manual switches. 

@ Set J = 0. 

@ Shift RA, FIB, and RC in linear mode. 

@ If J < 12, proceed. 

0 Increment J. 

@ If, in step @, J 2 12, transfer in parallel the data entry switch settings into 
RC (both x and y portions). 

@ If, in step 0, the model is operating in the tape mode, reset tape input register 

@ Read paper tape character. 

@ If first tape character is a negative sign, proceed. 

@ Set flip-flop S. 

@ set L. GO to step @. 
@ If tape character of step @ is a positive sign, reset S. Go to step 8. 
@ Set J = 0. 

T and start tape reader. 

@ Shift (one step) tape input register in the circular mode. 

@ Repeat step @ eleven more times. 

@ Store BCD digit in least significant end of tape input register RT. Go to 
step @ . (Repeat steps @ through @ for next three characters which are also BCD 
digits. This procedure reverses the digits for the ensuing BIDEC operation.) 

@ If, in step 0, character is A, set flip-flop X which connects RT to RCx. 

@ Reset L which changes RT to linear shift mode. 

@3J Set J = 0. 

@ If quantity is negative (i.e., S = l), proceed. 

@ Route quantity through two's complementing circuit. 

@ If, in step @, quantity is positive (i.e., S = 0), shift (one step) RT, RA, 

@ For any decade D containing a number greater than 7, proceed. 

@ Decrement (D) by 3. 

@ In step @, for any decade containing a number less than 8, proceed with 

RB, and RC. 

step @. Repeat steps @ through @ eleven more times. 
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@ ~f x = I, go to step @. 
@) If tape character of step 0 is a carriage return, reset X. Go to step @. 
@ If, in step @, X = 0, set G = 0, which indicates to main program that new 

@ If, in step 0, character is E, which signifies end of tape, stop. 
The main program, +-computer subroutine, and input program form the basis for 

data have been entered. Go to step 0. 

the design of the experimental model. 

0 E i  

STORE COMMAM) STROBE 

3 SUBTRACTER 
COMPLE- 

REGISTER Cy I 

DECECTOR selector 
T o  main 

program 

G - - - - - - - I  

* 
y-DATA &I 

Figure 23.- Data entry diagram. 

DESIGN OF THE EXPERIMENTAL MODEL 

The discussion of the design which follows points out how the subroutine, main, and 
input programs are implemented in the experimental model and proceeds in this same 
order. The logical design, in general, is presented directly in terms of NAND modules 
without the AND/OR design which sometimes precedes a NAND/NOR design. No attempt 
is made to show pin connections, duplications of circuitry, complete integration and. con- 
trol  circuits, and so forth; instead, included is only that portion of the design philosophy 
which is necessary for easy extrapolation to the complete wiring design. 

Figures 24 and 25 show the logic portion of the experimental model. By use of the 
rack layout of figure 26 the logic for the various functions performed by INTROL can be 
identified. In figure 24 is a temporary panel which corresponds to location S-BLOC 4 and 
which will be replaced by an operation flow indicator panel when INTROL becomes fully 
automatic. 
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Figure 24.- Front view of INTROL logic. L-65-2367 

i 
t 
i 
I .  

Figure 25.- Rear view of INTROL rack. L-65-2369 
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Figure 26.- INlROL rack layout. 
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Design of the IC/- Computer 

The *-computer occupies locations S-BLOCS 6 and 7, with its binary rate multi- 
plier in S-BLOC 8. Accumulators comprise a major portion of the computer. The 
accumulators are similar, but they do have significant differences. Therefore, a typical 
accumulator is described after which the peculiarities of each are pointed out. 

Typical accumulator.- In general, parallel adders are considered to be faster than 
serial adders. In some instances, however, the well-designed parallel adder is actually 
slower than the serial one that is implemented with the same speed logic. For example, 
the serial add time per bit for 1 megacycle logic is easily 1 psec, whereas in a simple 
parallel adder 2.2 psec was  required per stage to provide for carries.  Obviously 
unless some provision is made perhaps to eliminate this time per stage for those stages 
which do not actually carry, the parallel adder is slower; to make this provision, however, 
greatly complicates (ref. 6) the circuit. 
binary type of accumulators. 

Figure 27 shows a typical serial 
accumulator in which the quantity B 
is added (or subtracted if  N = 1) to 
(or from) quantity A and the result, 
replacing the old value, is stored in 
register A. The carry (or borrow) 
output Pk+l is delayed one time 
cycle T and fed back to the input. 

More typical for INTROL is the 
accumulator of figure 28 in which the 
B register is not an internal part of 
the accumulator and the carry (or 
borrow) delay is effected by the prop- 
agation flip-flop P. 

Table I1 is a truth table for the 
typical accumulator. Note that the sum 

for addition where N = 0 = + is Ak+l 
the same as for the difference 
for N = 1 = -. Hence, for either addi- 
tion or subtraction, 

Ak+l 

= ABP + AEP + b$ + X6P (17) Ak+l 

Therefore, INTROL utilizes the serial natural 

fl *E:: I pk& 

I 
~ I 

Figure 27.- Typical serial accumulator 

I 1 

Ak+l = A(BP + BP) + A(BP + BP) 
~~ - 

Figure 28.- Typical INTROL accumulator. 
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I 

where the kth subscript is implicit. 

and then 

Let 
H = BP + BP = B 0 P 

= AZ + XH = A  0 H = A  0 B 0 P 

(18) 

(19) 

Since EXCLUSIVE-OR logic was not readily available, 
Ak+l was implemented in the form of equation (17). 

The truth table shows that the propagation signal 
undergoes only 4 transitions from Pk to Pk+l out 
of the possible 16. 
flop P and its simple logic which was obtained from 
figure 29 as 

and 

This fact leads to  the use of flip- 

- sp = NAB + NAB = B(RA + NA) = B(N 0 A) = BW (20) 

'k+l 
--- 

RP = NAB + NAE = B(RX + NA) = B(-) = BW (21) 
where W = N @ A. Figure 29.- Map of propagation function. 

The NAND implementation of these equations is 
shown in figure 30. 
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Figure 30.- Implementation of propagation function. 

Accumulator 3.- The accumulator of figure 28 closely represents A3 in which shift 
register . A  is conventional (ref. 4) and comprises 24 stages. Input B is time-shared 
ORed with A2x and A2y outputs. 

Accumulator ~- 2.- Accumulator 2, in which the x- and y-portions a r e  identical, is 
required to perform only as a bidirectional counter in the sense that its input consists 
only of single plus o r  minus pulses. However, since A2 must serve also as the B 
register for A3 and A4, it must be capable of shifting. Also, although not required in 
the present design, both Ak and Ak+l outputs a r e  available simultaneously. There- 
fore, A2 is implemented as an accumulator. Its design differs from that of the typical 
INTROL accumulator only in that the Bk input (and associated logic) is eliminated. The 
counting is accomplished by setting the propagation flip-flop P and then by accumulating. 
Therefore, for A2, where B = 0, input equations (17), (20), and (21), respectively, 
reduce to 

Ak+l = AF + AP 

sp = 16x1 (for A2x) 

and 
RP = Gii + NA 

It is seen in figure 30 that, since Bk = 0, only the reset  portion of the propagation func- 
tion is required for A2. 

The twelve stages provided in register A enable a capacity of sign and 211 counts 
which are equivalent to a maximum distance of lt20.48 inches on the CalComp recorder. 
Since (A3) = xk 2 + YE, the maximum value of 

(A3) = (211)2 + (211)2 
22 22 = 2  + 2  

= 223 

Therefore, 
application 

52 

23 natural binary stages plus a sign stage a r e  provided. 
actually serves only as a check since it should never indicate negative.) 

(The sign bit in this 

. .. . ._ _. . 



Accumulator 4.- Accumulator 4 is a typical INTROL accumulator except that the 
For the nulling operation (eq. (14)), the nulling input is time shared by three sources. 

direction is opposite to the sign of (A4) (i.e., N[A4] = S[A4]) and shall be considered 
complete when (A4) changes sign. This change is detected by observing the propaga- 
tion flip-flop P after each accumulation;,a change is implied only when P is found in 
the set state. 

In order to establish the sign and bit weight of A4, the following symbol definitions 
are used: 

length of (Le., number of bit positions o r  stages in) RJ where J is any LRJ 
alphabetical character 

W6U weight associated with least change in u where u is any variable or (AJ) 

To accommodate 
need be no larger than 
of < lo was  imposed on 

A3, LA4 2 24. Since A4 is nulled after each input cycle, it 
A3. It is recalled that WgA3 = 2'. A resolution requirement 
the experimental model; hence, W6+ was made 2-6 = 0.9'. 

Therefore, to accommodate A3, w6A4 5 w6A3w6+ = 20 - 2-6 = 2-6. TO accommodate 

the other two inputs, w6A4 5 W6A2W6x = 2' - 20 = 20. Therefore, LA4 = 24, where six 
bits are located to the right of the binary point and the two inputs from A2 are scale 
shifted six positions as depicted in figure 31. 

Figure3l.- Bk input to A4. 

Shift pulse generator.- The shift pulse generator was  developed to provide the set 
of 24 shift pulses required for operation of the accumulators. Since the accumulators 
operate at speeds of 1 psec, the generator has to count the set  of pulses and make deci- 
sions at speeds approaching the upper limit of the logic used. Carry delays associated 
with conventional counters render such a design impractical at this speed. To minimize 
delays, a feedback shift register was  utilized for counting. Horton (ref. 11) has shown 
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that a 12-state counter results if a 4-stage shift register is provided with 
Feedback = + ABE as shown in the boxed area at the top of figure 32. This 
arrangement gives the counting sequence of table III. 

The circuitry at the bottom of figure 32 contains the necessary controls for 
starting and stopping the generation of pulses without pulse splitting. When SW1 
is open, 12 pulses are generated as required for A1 in the input section. The 
operation of the controls is best shown in the timing chart of figure 33. The clock 
generates a 60-40 duty cycle pulse for  best operation of the flip-flops. The flip- 
flops are clocked on the positive rise portion as indicated by the "action" line. 
For 12-pulse operation, the start pulse sets only M; - W and the clock then set 
G at the proper portion of the clock cycle to start the generation of shift pulses. 

I Y Y s m Y  IY I I I I 
1 I \ I  I 

I: 
I 

I 

I 
I 
I 
I 

I 

I 
/ 

/ 
/ 

Figure 32.- Shift pulse generator. 
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TABLE III.- GENERATOR COUNTING SEQUENCE 

State 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
1 

Stage I 

-4 1vsecP- 
1Mc CLOCK 

ACTION w- 
START - 
M r 
I r 

w_ 
G 

(a) 12 shift pulses. 

CLOCK 

START 

M 

D 

!! 
G 

SHIFT PULSE 

F = %  ~. \ . . -  /I I 

(b) 24 shift pulses. 

Figure 33.- Shift-pulse-generator timing. 
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m e n  12 of these pulses are generated, the shift register returns to its original pattern 
of 0000; this turns on - W which immediately stops further generation. The power 
amplifier has three (positive logic) OR inputs and, hence, either - W or G can inhibit 
the generation by holding the input off. 

For 24-pulse operation, SW1 is closed and, hence, the start pulse sets  both D 
and M. When D is reset in the middle of the chain, it sets M which again effects 
the generation of the final 12 pulses. The gap of 2 pulses in the middle of the pulse train 
allows time for switching to take place in other portions of INTROL. The end of a 
24-pulse operation is detected by pF, the positive transition of the signal F = DG 
shown in figure 33(b). 

- 

Counter 1.- The Src/ pulses which enter A3 are integrated by C1 so that 
(Cl) = ZSQ = IC/. Therefore C1 is bidirectional; it is modeled after the typical counter 
of figure 34. It is recalled that p = 1 and p = 0 signify that the angle being computed 
is angle P and angle rc/, respectively. Therefore, the C1 operation is given by 

where 

S[6rc/] = S[A4] 

4 
i I I # 

# 

Figure 34.- Typical bidirectional counter. 
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Controls.- The controls required to effect the sequential operations of the 
+-computer subroutine are explained in the form of Boolean equations. Flip-flops X, 
Y, Q, and E are defined, respectively, as 

where MX signifies that the operation is in the X mode and F is defined in figure 33 

sy= p Y I  Ry = MyPF 

SQ = RQ=xy 

SE = PX + Py RE = P[A4]pFE 

The E (error), X, and Y mode signals are, respectively, defined as 

The 6+ increments a r e  generated by 

The shift-pulse-generator start signal is PI + I6+ I where 

which can be derived from the simple function I = E + w. 
care  of any random occurrence of 6x and 6y increments including the simultaneous 
occurrence. The function I is also used as 

This arrangement takes 

The mode signals a r e  used to establish the proper operational signs and the proper 
interconnections for the four accumulators. Their logical equations are as follows: 

N[A2x] = S[~X] 
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N[A3] = S[6x]Mx + S [6yJ My 

N[A4] = S[6x]Mx + S [ ~ Y J M ~  + S[6+]ME 

67 
+ MYS &2x]) D[SPG2] ) + M EA[A3] 

Equation (27) states that the B input of A4 is connected, during the D signal 
(i.e., during the first 12 shift pulses (fig. 33)), to the Ak signal of A2y if the 
+-computer is operating in the X mode or to the Ak signal of A2x if  it is operating 
in the Y mode, and during the 5 signal, to the appropriate A2 sign. Before 
entering A4, the data a r e  delayed by 67 or  6 shift pulses. (See scale delay register 
of fig. 31.) Finally, if  the +-computer is operating in the e r ro r  mode in which the 
ffservo" is nulling, B[A4] is driven without delay by Ak of A3. 

Binary rate multiplier.- As has been indicated, the binary rate multiplier (1) per- 
forms the Q multiplication (as required, for example, in eq. (1)) and (2) changes the 
angular unit of measure from radians to 71 radians (to simplify the theta decode logic). 
Since 71 is an irrational number and hence cannot be precisely represented in digital 
form, some precision must be established for its representation in the binary rate multi- 
plier. The resolution of II/ was set at -0.90 in the section pertaining to A4; this reso- 
lution represents -0.90 out of 3600 or -1 part  in 400. In order not to deteriorate appreci- 
ably the precision limited by this resolution, 
Hence, the binary rate multiplier is designed to be a 10-stage device and follows the logi- 
cal design of figure 35 except that it is bidirectional instead of unidirectional as shown. 

71 is represented to =1 part  in 1000. 

It is noted in figure 35 that for I input pulses, FI pulses a re  emitted; 
IF1 is a binary number <1 - that is, 
Appropriate values of IFI, for various trajectories, are found in the binary columns of 
table IV. 

IF1 = . f lf2fg . . . fn, where f .  J a re  binary bits. 
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TABLE 1V.- INPUT CONSTANT FOR BINARY RATE MULTIPLIER 

1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 

7r 

Decimal Octal Binary 

.318 309 886 .2427 .010 100 010 111 

.397 887 358 .3135 .011 001 011 101 

.477 464 829 .3643 .011 110 100 011 

.557 042 301 .4351 .lo0 011 101 001 

.636 619 772 .5057 .lo1 000 101 111 
-716 197 244 .5565 -101 101 110 101 
.795 774 715 .6273 .110 010 111 011 
.875 352 219 .7001 .111 000 000 001 
.954 929 658 .7507 .111 101 000 111 
1.000 000 000 1.0000 .111 111 111 111 

Trajectory 
IFI = (Q - 1)/~ 

Decimal Binary I Octal 

.ooo 000 000 

.079 579 295 
,159 154 943 
.238 732 415 
,318 309 886 
.397 887 358 
.477 464 829 
.557 042 301 
.636 619 772 
.681 690 113 

.oooo 

.0506 

.1214 

.1722 
,2430 
.3136 
.3644 
.4352 
.5060 
.5347 

,000 000 000 000 
,000 101 000 110 
,001 010 001 100 
,001 111 010 010 
,010 100 011 000 
,011 001 011 110 
,011 110 100 100 
,100 011 101 010 
,101 000 110 000 
,101 111 100 111 

Linear 

Cardioid 

Circular 

Lemniscate 
Maximum 

TI (pulses or pulse rate) 

IF1 = .flf2f3...fn, where f are binary bits 3 

Figure 35.- Binary rate multiplier. 
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Counters 2, 3, and 4.- It is seen in figure 36 that 16Q,I pulses from the binary 
rate multiplier go to the merging counter C3 if (C3) # 0; otherwise, the pulses go to  
e r ro r  counter C2 which contains E = Q, - OC. Then E is integrated in C4 which 
contains 8 = eC + 8f. As noted in the figure any change in 8c, whether from its own 
S/2-l stage or from stages 22O of C2, is negatively reflected back to C2 to correct 
the BC portion of E. 

This implementation is detailed in figure 37. It is noted that C2 differs from the 
typical counter of figure 34 only in that additional inputs to each stage a r e  provided. 
When (C2) = E < 0, the value appears in two's complement notation. Therefore, since 

e = CE (28) 

and (C4) = 8, N[C4] = 0, always. Hence, C4 is a basic asynchronous unidirectional 
counter except for one change. The constraints associated with equation (28) require C4 
to count or  add as specified in table V. Thus the values on the left of the table a re  such 
that 8 = 8c + Of, where 0 5 [ec _= O(mod 1 octantg < 8 and l8fl 2 0.5 octant. The right 
side of the table shows the corresponding binary number. This pattern is the counting 
sequence of a standard natural binary counter (in which p transitions of each stage 

MERGING LOGIC 

c2 
E 

c4 
e 

PRESET 

Figure 36.- Interconnections of C2, C3, and C4. (Counter dimensional unit is  octant where 1 octant = 45O.) 
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\ MERGING INPUT 

ADD ? 

Figure 37.- Detail of section A of figure 36. 

TABLE V.- COUNTING SEQUENCE FOR C4 
[e, ec, and Of in octantsl 

Decimal 
.~ 

1.50 
1.25 
1 .oo 

.75 

.50 

.25 
0- 
7.75 
7.50 
7.25 
7.00 
6.75 

- 

2 
1 
1 
1 
1 
0 
0. 
0 
0 
7 
7 
7 

.- 

-.50 
.25 

1 
-.25 
-.. 50 
.25 

D -  
-.2E 
-.5c 

.2! 
0 
-.2: 

QC - -__ 

12 21 20 
~ 

~ 

0 1 0  
0 0 1  
0 0 1  
0 0 1  
0 0 1  
0 0 0  
0-0-0 
0 0 0  
0 0 0  
1 1 1  
1 1 1  
1 1 1  

1 0  
0 1  
0 0  
1 1  
1 0  
0 1  

- 0-0 
1 1  
1 0  
0 1  
0 0  
1 1  

5 I 

c2 
E 

24 
e 

trigger the next most significant stage) 
except for the 2O stage which triggers upon 
the occurrence of a! transitions of the 
2-1 stage. This simple implementation 
deviation can be seen in figure 37. 

The design of C3 is very similar to  
that of C2. The addition or subtraction 
operations of the two counters are summa- 
rized in the following Boolean equations: 
For 1641 input, 

N[C3] = N[C2] = N[Cl] = /3 @ S@4] 
For (6eC4( input, 

N[C3] = N[C2] = S[C3] 
For the negative feedback from C4, 

N[C2] = 1 
For initialization, 

N[C3] = 1 
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Theta Resolver 

The theta resolver of figure 36 must resolve OC into 6x and Sy increments. 
Table VI is the theta resolver truth table. The X's in the table stand for "don't care" 
conditions. From the table it is seen that 

therefore 16x1 = E + c 

therefore 

S[~X] = AB + AE 

TABLE VI. - THETA RESOLVER TRUTH TABLE 

ec, octants 
- 

A 

22 

B 

21 

C 

20 

0 
0 
X 
1 
1 
1 
X 
0 

Merging Function 

X 
0 
0 
0 
X 
1 
1 
1 

(::to: =,: = 0) 

top x = 0 
bottom X =  1 

, An approximation to the merging function given in figure 7 is shown in figure 3.8. 
2 The abscissas a r e  related by D = dp. The stair steps show the domains for which vari- 

OUS p c + 1  corrections are made. The graph was used to  determine the values given 

in table VII from which the following Boolean equations were obtained: 
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1.00 

2l octants 90' - 50 

1 
I 
5 10 50 100 500 1000 

D = ( ~ 3 )  = $2, increments 

Figure 38.- Merging function approximation. 

A = (lae,j = 2-4) = io + 11 + 12 + . . . + 24 

B = ((60c$1 = 2-3) = (8 + 9)x 

C = ( (60c+( = 2-2) r: (6 + 7 ) z  

--- 
D = (16ec+l = 2-1) = (4 + 5 ) m c  

---- 
E = (16OC+l = 2') = (2 + 3 ) m C D  

- 21 = 1XGEijii 
= (pecgl - ) 

Since the corrections are mutually exclusive, they 
are gated in parallel into the counters without 
carry interference. 

5000 

TABLE VII.- MERGING INCREMENTS 

flost significant 
ON stage of A3 

1 
2, 3 

4, 5 

6, 7 

8, 9 

10 - 24 

correction 

legrees 

90 
45 

2% 

1 11- 4 

8 
3 

s 

2z 

ktants 
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Input 

The input section of S-BLOCS 2 and 3 of figure 26 contains the three natural binary 
input registers A, B, and C and the accumulator 1 which takes the various first dif- 
ferences among the three input points contained in the registers. 

Registers.- Since RA, RB, and RC are implemented in x-y pairs, six 12-stage 
standard shift registers are connected as in figure 16 so that RC shifts into RB and 
RB into RA. This "linear" shifting enables the registers to  be updated by a new input 
point. The registers also operate in a "circular" mode in which the serial output feeds 
back into the input as required by Al.  

Accumulator 1.- Accumulator 1 is represented by the typical INTROL accumulator 
of figure 28; it has 12  stages and uses the previously described shift pulse generator 
(fig. 32) which is operated with SW1 open. Since RA, RB, and RC form the various 
serial  inputs to Al, their contents must be shifted to Al. To prevent destruction of the 
data during this process, they are also fed back to the registers'  inputs in accordance 
with the circular mode. 

Negative quantities in the registers a r e  represented in two's complement form 
(ref. 12) and, hence, A1 operates on these quantities just as though they were positive. 
Therefore, the operation of A1 for RA is always addition and for the other two reg- 
i s te rs  is always subtraction as required for the first differences of steps @ and @ in 
figure 21. 

Data Entry 

As indicated in figure 23 two sets  (12 each) of manually operated toggles a r e  pro- 
vided for entering the x and y natural binary data. After flip-flop G 'has been reset 
by SW1, a main program command pulse causes the data to be transferred in parallel 
into RC. Since both set and reset  inputs a r e  connected to  double-throw switches, 
resetting the register prior to entry is not necessary. In addition to the manual switch 
data entry, paper tape input is provided as an alternate mode of operation. Tape, pre- 
pared on the Flexowriter in the format of table I, is interpreted by a standard tape reader. 
Since natural binary coding is used in the input registers, the binary coded decimal (BCD) 
on the tape is converted to the natural binary code before entry into RC. Also, all nega- 
tive input points a r e  converted to two's complement representation. 

Code detector.- The code detector is used to recognize the non-numeric or control 
characters emitted by the tape reader. In INTROL these special characters serve the 
following functions: 
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A ''space" character which on tape separates the x- and y-data and controls flip- 
flop X of figure 23 which channels the x and y input data to  their 
respective C registers 

(+) and (-) sign characters which control flip-flop S that "turns on" the two's com- 
plementer for negative quantities 

R carriage return which stops the tape reading and sets flip-flop X for next 
data point 

Since a seven level code is utilized and only a few of the possible 27 combinations 
a r e  used, many "don't care" conditions exist which permit a relatively simple synthesis 
of the detector. The particular detection codes used a r e  specified in table I. 

BCD to binary converter.- The BIDEC method (ref. 6) is used for the BCD to binary 
conversion. As related to this particular application the BIDEC algorithm is given in the 
section "Operations of the Experimental Model." 

TABLE Vm.- TRUTH TABLE FOR "3 SUBTRACTER" 

If decade reads 

Binary coded decimal 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

Equivalent 
decimal 
number 

0 to 7 
8 
9 
10 
11 
12 
13 
14 
15 

Equivalent 
decimal 
number 

(No change) 
5 
6 
7 
8 
9 
10 
11 
12 

Change decade to 

Binary coded decimal 

0 
0 
0 
1 
1 
1 
X 
X 

1 
1 
1 
0 
0 
0 
X 
X 

0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
X X 
X X 

The specialized "3 subtracter" is synthesized by finding the logic which implements 
truth table VIII. Since counts 14 and 15 never occur, they are considered "don't care" 
conditions. 
four flip-flops of each decade is obtained: 

From the reduction maps of figure 39, the following implementation for the 
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D C 

B A 

Figure 39.- Maps of BIDEC subtracter logic. 
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SC = DC(X +E) = DRD = pD 
RC = CD 

Hence, 

TB = AD 

Hence, 

It is noted that the characters a r e  emitted from the tape reader with the most sig- 
nificant character leading and that BIDEC requires the characters to be shifted by RT 
of figure 23 with the least significant character leading. Since the shift register used is 
unidirectional, the required rearranging is accomplished as follows: 

(1) Connect (with fictitious switch L) the serial output of the shift register to its 
serial  input. 

(2) Shift register 12 times. 

(3) Read the BCD character, 4 bits in parallel, into the units position as shown i n  
figure 23. 

(4) Repeat steps (2) and (3) for a total of four characters. 

Since RT is 16 bits long,.its contents after reading the four characters a r e  
arranged as shown in figure 23. This arrangement is now ready for the BIDEC operation. 

Two's comp1ementer.- If the absolute value of a negative number is subtracted from 
zero in the typical INTROL accumulator of figure 28, the two's complement results. 
Thus, since the two's complementer may be considered an accumulator in which Ak = 0 
always, equations (17), (20), and (21) reduce, respectively, to 
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For the complementation of each number, P is initially reset. Equations (30) 
and (31) state that for complementing (Le., N = 1) P is set  the first time that Bk is 
true in the serial operation and thereafter P remains set. Upon this hypothesis, equa- 
tion (29) states that for complementing, Ak+l = Bk @ 0 = Bk until the first Bk = l, 
after which Ak+l = Bk @ 1 = Bk. For positive numbers (Le., N = 0), P never gets set  
and, hence, Ak+l = Bk. Therefore, the Bk number does not get changed. 

- 

EXPERIMENTAL RESULTS 

In general, the experimental results a r e  in good agreement with the theory and 
confirm that the mathematical technique and implementation thereof a r e  feasible. 
curves presented in this section a r e  reproductions of those actually generated by the 
model and were selected because they emphasize both merits and weaknesses of the 
present model. 

The 

Evaluation of Generated Curves 

The coordinates of the input data points of figure 1 were determined and read into 
The generated curve of figure 40 shows close agreement with the experimental model. 

that of figure 1. 

Y 

0 100 200 400 

Figure 40.- Points of f igure 1 interpolated by experimental model. 
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Y .c 

Figure 41.- The f igure eight. 

A considerably more difficult task is exhibited in figure 41. The figure-eight curve 

demonstrates the ability to 

(1) draw smooth curves through widely spaced points 

(2) operate on nonequal argument data 

(3) produce multivalued functions 

(4) process data in all four quadrants 

(5) handle infinite tangents 

(6) produce both positive and negative rotations 

At first glance, the curve between points 8 and 9 appears to be in error .  
the point sequence indicated in the figure is carefully considered, the distorted shape is 
found to be a reasonable interpolation. 

The.curve between points 8 and 9, however, does reveal a weakness of the experi- 

However, when 

mental model. The abruptness in the turning is a result of the inability of its merging 
hardware to handle effectively any points which a r e  spaced >0.7 inch. 
ever, is easily extended by adding similar stages of logic. 

This range, how- 
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Figure 42.- Merging examples. 

Y 

X 

, -100) 

Figure 43.- Circle through two pofnts and one slope. 

Figure 42 shows some results of merging 
tests designed to  insure satisfactory merging in 
all directions. The point separation of -0.7 inch 
was chosen since, as previously mentioned, this 
distance represents the maximum effective merging 
range for the model. 

As predicted in the section "Derivation of 
Output Function," the circle of figure 43 does have 
four sides slightly flattened. It is recalled that 
this tendency to flatten results from a mathematical 
approximation and that for normal curve interpola- 
tion this flatness is insignificant. This particular 
circle was drawn clockwise, first from A to B 
and then from B to A. In addition to the 
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coordinates of A and B, the input data included the slope at B for the A to B 
portion and the slope at A for the B to A portion. 

The curves in figures 40 to  43 were generated in the circular mode. The cardioid 
mode is demonstrated in figure 44. The curve was generated first from A to  B over 
the lower path and then from A to B over the upper path. The input data consisted 
of the coordinates of A with respect to a coordinate system centered at B and alined 
with the slope (zero) of B. The upper or lower path is selected by integrating IC/ over 
a path in the upper or lower half-plane, respectively. An explanation of this selection 
can be seen in basic equation (l), 

4' = &IC/' 

by observing the initial $I' for both IC/ = +T and IC/ = -T. Furthermore, since 
d@' = Q dIC/' and Q > 0, the sense of rotation of 4' is the same as that of IC/'. In 
general, then, as a point moves along the interpolated path, IIC/'l and 14'1 = Q 
decrease monotonically, both ending with zero slope. 

Careful inspection of this cardioid curve and the circular curve reveals a slight 
discrepancy in symmetry. 
(ref. 6) in the binary rate multiplier. 
this symmetry, as perhaps in the control of a machine tool, two or three stages of 
smoothing are recommended. A secondary contributor to the distortion may be the 
coarse resolution in several components of the system where, in the interest of simple 

This distortion results primarily from the lack of smoothing 
For applications in which it is important to correct 

Y 

Figure 44.- Cardioid through two points and one slope. 
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and minimal hardware, the model was designed with fewest stages. For example, some 
of the computations are resolved to only -3O. In some applications, however, this resolu- 
tion should be extended by a factor 24. 

Finally, the lemniscate mode is demonstrated by the curve of figure 45. Again two 
points and one slope dictated the path which was  drawn. It is noted that the entire path 
lies in the same quadrant with the starting point A. The Y-axis then represents an 
unstable line on which the lemniscate diverges. Thus l+'l must be limited to ~ / 2 .  

-75 1 

X 

Figure 45.- Lemniscate through two points and one slope. 

+' Boundaries 

In general, the +' limit occurs when ]+'I reaches a value such that 
I@' - +'I = T. This limit may be stated as a function of Q as follows: 

T > 16' - + ' I  = IQ+' - +'I = J+'(Q - 111 

For Q > 1, 

and, therefore, 

To cover all four quadrants, +' must range over 27r. This range can be effected 
with a maximum value of I + '  I 
gives 

of T. Substituting this maximum value in equation (32) 
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Hence, 

and, therefore, 

Thus, any two points in the finite coordinate system can be connected and termi- 
nated with any prescribed slope if 1 < Q < 2. Note that the interval is open. Therefore, 
for the important circular mode in which Q = 2, an unstable though somewhat trivial 
domain exists: the line for which +' = fa. 

@-Computer Error 

It is recalled that the design of the +-computer is based on the approximation 
S q  = tan S q .  Near the origin, however, 
45' angle would be computed as ~ 5 7 ~ .  This discrepancy of 12' is prohibitive. In the 
model, it w a s  reduced to an e r ro r  of <lo simply by presetting accumulator A3 to 0.012 
before the computation of each angle. 

S+ can be as great as 45O per increment; this 

Initialization of (C3) 

In step @ of the operations algorithm (p. 32), each new segment 2 of interpola- 
tion is initialized to -ec, the angle at which the last step entered a data point. In general, 
this angle is not p2 the "average" slope of the (2 - 1)th segment into the point. Since 
the initialization should be 0, -1 and not ec, prohibitive angular discontinuities result. 
Therefore, for the curves in figures 40 and 41 each initialization was manually adjusted 
to pZel  when lec - pz -11 was large. 

The correct initialization may be implemented by using C1 which contains, at the 
end of a segment, a measure of the desired angle 
is radians and, hence, the quantity must be counted into the binary rate multiplier for con- 
version to P radians and then recounted into C3. Step @ of the operations algorithm is 
corrected by the following procedure: 

p2 -l. Unfortunately the unit of (Cl) 

@ Reset C2 and C3. 

@ Set ( ~ 2 )  = - ( ~ 4 ~ ) .  

@ Count-down (Cl) through the binary rate multiplier into both C2 and C3 
and apply appropriate multiplying factor and operational signs to leave (C2) = PI -1 - BC 

and (C3) = -p2 -l. 

@ Integrate @ and simultaneously count the angle into C3 to leave 
(C3) = - P2-1. 

@ Begin the interpolated segment. 
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RESEARCH BYPRODUCTS 

During the development of the subject controller, several innovations or  research 
byproducts ensued. These byproducts are essentially separate entities which should find 
application in other areas, devices, or systems. The most important byproducts are as 
follows : 

+-computer: A special purpose incremental digital computer for integrating the arc 
tangent angle as a function of various finite Sx and Sy input increments 
The described design can be easily modified to obtain virtually any accuracy and capacity. 
If the +-computer is utilized as a finite difference device, its speed is great. 

Bidirectional binary rate multiplier: A device which eliminates the "hysteresis" inher- 
ent in conventional binary rate multipliers when utilized in bidirectional applications 

Adder with round off: A digital accumulator which outputs rounded-off information to one 
precision but retains a finer precision for subsequent calculations 
Although developed in a natural binary system, the scheme is applicable to other weighted 
codes provided only that the weight of the least significant bit of the rounded portion is 
twice that of the adjacent lower order bit which, on turning on, carr ies  into it. For 
example, in a BCD code of weight 1-2-4-5, the least significant bit (bit 1) of one decade 
has twice the weight as that of the most significant bit (bit 5) of the adjacent lower order 
decade; hence such a code is suitable. 

High speed shift pulse generator: A device which, on command, generates a fixed number 
of fully formed pulses at a rate equal to the nominal speed of the logic with which it is 
implemented 
Although developed with the fixed number as 24, the scheme is adaptable to virtually any 
quantity. 

Serial two's complementer: A simple digital device for serially converting a sign- 
magnitude negative number to its two's complement representation (and vice versa) 

NEED FOR ADDITIONAL RESEARCH 

The experimental results indicate that the merging-function-constant-Q concept 
developed in this research works well. Nevertheless, the concept was an expediency 
which does not f i t  harmoniously into the system. Therefore, the scheme which follows 
seeks to satisfy this need. 

From the fundamental relation @ '  = w' (eq. (l)), 
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At the beginning of a segment, 

@ = a !  

and 

IC/ = IC/(A,B) 

Therefore, 

Q = Q(A,B,M) 

that is, Q may be considered a function of the four independent variables A, B, a, 
and p. This characteristic is demonstrated in figure 46 where, for the specific points 
A and B, a Q-family of curves is drawn for various values of a If the coordinate 
system of this figure is considered to  be the transformed system, then the p = 0 slope 
is generalized to  any slope by the transformation itself. Thus, for any two points A 
and B with slopes CY and p, respectively, a value of Q is found for use in basic 
equation (1) to enable generation of a smooth segment. The catch is that the smooth 
curve is not always the desired one. In general, the desired curve results if the direc- 

This condition is satisfied in substantially 

S-shape segment, however, the condition 
fails and the generated segment is not the 
desired connection. 

tion of a! is such that \IC/' I decreases. Y 

all segments usually encountered. For  an X 

One approach is to  ignore the failure 
condition since it seldom occurs. Another 
approach is to restrict  the input data spacing 
to prevent the failure condition. A third and 
best approach is to find a simply implement- 
able solution which copes effectively with the 
failure condition and gives the desired path. Figure 46.- Q-family connections from A to B. 

CONCLUDING REMARKS 

The prime objective of this research was to evolve a simple controller for auto- 
matically generating a smooth curve through an ordered set of data points even for 
unequal arguments, closed contours, and raw data. The "figure of merit'' for the gen- 
erated curve was to  be based on how well it resembled one properly drawn with french 
curves. Tacitly assumed was that sufficient input data were given to' represent faithfully 
the curve without resorting to contextual information, such as characteristics of the data 
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source (e.g., frequency content, bandwidths, o r  intentional discontinuities), or recognizing 
that the input data f a l l  into some analytic function or geometric shape. The effect of 
context was forcibly demonstrated when the figure eight was redrawn in the context of two 
circles; the resulting curve was  significantly less distorted. 
eight the sufficient input data assumption was violated. The foregoing and other experi- 
mental curves do indicate that given sufficient input data, the controller generates curves 
of equal fidelity to the skilled draftsman using french curves. Another way of stating 
this fact is: if enough input data are given so that the same curve results when drawn 
(out of context) by several skilled draftsmen, then the controller will also produce the 
same curve. 
highly subjective interpretation is perfectly adequate if  consistently applied to both 
draftsmen and controller. 

Therefore, for the figure 

The word "same" does not require a quantitative definition because even a 

Considering the magnitude of the task which it performs, the controller satisfies 
also the secondary objectives of simplicity and speed. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., April 6, 1966. 
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APPENDIX 

X-axis reference direction does not change; 
hence + is invariant. However, under 
coordinate rotation (from system 2 to sys- 
tem 3), the reference direction changes by 
the amount of the rotation; hence + changes 
by an equal amount and, thus 

Y1 

b 

/ 

DERIVATION OF STEERING ANGLE 4 

3 X 

$'  

P 
x2 

Consider the present problem to be that of determining the angle $' associated 
with the tangent of figure 2. The angle 4' can then be transformed to $ which can 
be used to guide point p from a to b. 

Since b'  is a destination of p' , the direction of b' with respect to p' is 
apparently an important parameter. The angle +' is therefore defined, as indicated in 
figure 2, as the instantaneous angle of the line connecting b' and p' as p' moves 
along the curve - that is, 

where x' and y' are the coordinates of p'. 
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APPENDIX 

Let cp' = cp'(t,b') and, in the interest of obtaining simple relationships, assume that 

(es. (1)) 
$ 1  = Qq' 

where Q is a constant. Several significant cases then result. 

Case I - Q = 1: Obviously case I is the linear case in which 

where c is a constant for xk 5 x' < x;. Hence @' would guide p' over a constant 
slope or linear path from a' to b'. 

Case 11 - Q = 2: From equation (l), 

cp' = 2t,b' 
dY In figure 2 it is seen that - = tan @'. dx Therefore, 

a first order, homogeneous differential equation. (Prime with x and y is implicit.) 
Let 

Y v = -  
X 

then y =vx and 

Separating the variables gives 

3 
-- 

2 v - v + v  
dx dv dv(1 - v ) ~  

2v v 
- -- x - 1 - 4  - 

Therefore, 

v v  + 1  ".w X 

By use of partial fractions, 

(37) 

2 A B  1 - v  +- V(v2+.=7 v 2 +  1 
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APPENDIX 

and therefore, 

1 

Substituting A = 1 in equation (38) gives 

1 - v 2  1 B - v 2 + 1 + B v  

Hence, 
B = - 2 ~  

Substituting the values of A and B into equation (38) and equation (38) into equa- 
tion (37) results in 

Integrating gives 

lnlxl= 1nJvl-  lnlv2 + 11 + In c 

and, hence, 

Taking the antilogarithm gives 

*C = x g  + v) 

Therefore, from equation (36), 

By substituting 2 r  for c, 

x 2 + y 2 * 2 y r =  o 

and thus 

x2 + (y * r)2 = r 2  

Therefore, the resulting path for  $' = 2q '  is one of 

Y' 

t 

X' 

I a family of circles o r  radii r, centered on the Y-axis and 
displaced from the origin in both positive and negative direc- 
tions by a distance equal to their radii. (See fig. 48.) 

Figure 48.- Circular paths for 
$' = 2#'. 
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Case III - Q = 3/2: From equation (l), Y' 
A 3 

@' = z V  -e  
b 

Polar coordinates will be used to show 
that case III also yields a familiar geometric 
curve. First, however, it is convenient to 
introduce the lemma 

7 X' 

de t a n 6 = r -  dr 

where r and 8 a r e  the standard polar 
variables and 6 is the angle between the 
radius vector and the tangent line (fig. 49). 

/ 

Figure 49.- Relation of 6 to O', $', and 0. 

For the proof of the lemma, assume that the curve is given in the form r = r(e), 
where r(e) is differentiable. From figure 49, it is seen that 

tan 6 = tan(@? - tc/') 
= tan(@? - e + T )  

Therefore, 

tan 6 = tan(@' - e) 
- tan @ ?  - tan 8 

1 + tan @' tan e - 

9-' 

Recall from the polar to Cartesian transformation that 

x =  r COS e 

y = r sin 8 

and, therefore, 

dx = -r sin e dB + cos e dr 

dy = r cos 8 de + sin 8 dr 
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Substituting equations (4 1) into equation (40) gives 

tan 6 = 

- - 

which proves the 

r cos e(r cos e de + sin 8 dr) - r sin e(-r sin 8 de + cos 8 dr) 
r cos e(-r sin 8 de + cos 8 dr) + r sin e(r cos 8 de + sin 8 dr) 

r2cos2e de + r2sin20 de - r2de dB 
r cos2e dr  + r sin2f3 d r  r d r  dr 

--=r- 

lemma. From this lemma and figure 49, 

de 
dr  r -- = tan 6 = tan(rC/?/Z) = tan 

Separating the variables results in 

d r  de = sin(B/2)de 
~0t(e/2)  COS( e/2) 

-=  - 

Since the numerator is the differential of the 

the right-hand side) equation (42) is easily 
denominator (except for a factor of 1/2 on Y' 

integrated to give 

X' 

In r = 2 In  COS(^/^) + In 2a 

where r > 0, cos(O/2) >O, a >O, and 
In 2a is the integration constant. Taking 
the antilogarithm gives 

r = 2a ~ 0 ~ 2 ( e / 2 )  (-71 < e < a) 

a n 4  therefore, 

r = a(l + cos e) (43) 
I 

Figure 50.- Cardioid for @' =: #' . the classical form of the cardioid of 
figure 50. 

Case IV - Q = 3: From equation (l), 

4' = 3Ip 

Again, from the lemma and figure 49, 

r - de = tan 6 = tan(2(8 - 71)) = tan 28 
d r  
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Separating the variables results in 
Y' 

I 
dr  de (cos 28)de 
r t an28  sin 28 
-=-= 

which is easily integrated to  give 

1 
2 

In r = - ln(sin 26) + In a 

where r > 0, sin 28 > 0, a > 0 (fig. 51), 
and In a is the integration constant. Taking 
the antilogarithm yields 

r2  = a2sin 20 (4 5)  

the classical form of the lemniscate (ref. 13) 
of figure 51. 

(44) 

Figure 51.- Lemniscate for 0' = 3 ~ ' .  

Since most of the equations of the foregoing figures are recognizable more easily- 
in polar coordinates, a polar generalization, which includes cases I1 to IV (case I is con- 
sidered to be trivial), is now derived. The relations 

and 

from figure 49 with equation (1) 

give 

Therefore the lemma can be expressed as 

6 = $ 7  - *c . '  

+ f = e - ~  

$ 7  = Qq' 

6 = (Q - l ) ( O  - T) 

r - d8 = tan[(Q - l ) ( O  - T) + rk] 
d r  

where k is any integer. Separating the variables results in 

d r  cos[(Q - l ) (8  - T) + Tk]d8 

sin[(Q - l)(8 - T) + ~4 - =  

which is easily integrated to give 

l n r = -  In sin[(Q - l ) ( O  - T) + ~ f l  + - l n c  
Q -  1 Q -  1 

1 
Q -  1 

where r > 0, sin[(Q - l)(8 - T) + Tk] > 0, c > 0, and - In c is the integration 

constant. Taking the antilogarithm yields the polar generalization 

X' 
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rQ-' = c sin[(Q - l ) ( e  - n) + nk] 

where the domains of 8 result from the conditions that 

(sinC(Q - l ) ( e  - T )  + ~k] > 0) *(O + 27rm < [cQ - l ) (e  - n) + nk] < 7~ + 2nm) 

for any integer m, and 2nm c kn. 

For case 11, in which Q = 2, equation (46) becomes for k = 1 

r = c sin 8 

r = -c  sin 8 

(0 < e < 9) 

(n < e < 2n) 
and for k = 0 

which agrees with equation (39), as can be seen from the following transformation to 
Cartesian coordinates: 

2 2  *c=-=- r l-2 - x  + Y  
sin e r sin 6 Y 

For case 111, in which Q = 3/2, equation (46) becomes for k = 1 

Squaring both sides gives 

r = c2cos2(:) = c2 +(I + cos e) 

C2 which agrees with equation (43), where - = a. 
2 

For case IV, in which Q = 3, equation (46) becomes for k = 2 and k = 0, 
respectively, 

r2  = c sin 2e (."::;) 
which agrees with equation (45), where c = a2. Also for k = 1 and k = -1, 
respectively, 

r2  = -c sin 2e 
(.<<:<::) 
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Thus, equation (46) becomes 

r Q-l = c sin[(Q - 1)8] 

for integer values of Q > 0 and for k = Q - 1, and 

= ~ ' { l  + COS[~(Q - 1)4} 

2 
for integer values of (Q + 0.5) > 1 and for k = Q - 0.5 and c' = - 2 '  

C 

(47) 

Other popular geometric shapes can probably be found by solving equation (47) for 
additional integer values of Q or solving equation (48) for additional "half-integer" 
values. Also, Q may be quartered or further subdivided to obtain other shapes. With- 
out attempting to  exhaust all of the important shapes, however, a significant conclusion 
is stated in the following theorem which is based on figure 49: 

Theorem: If 8 is the polar angle of a point on a curve and $I is the tangent 
angle of the curve at the point, then for -a S (+ = 8 - a) < a simple linear relationships 
exist between $I and +, such that p generates smooth well-known geometric shapes 
which go through the coordinate origin at zero slope. 

All that remains to be proved is the origin zero-slope portion. That the origin is 
a solution of equation (46) is easily seen by substitution; its slope may be determined as 
follows: 

lim rQ-l  = 0 = lim c sin[(Q - l ) ( O  - a) + rk] 
P-0 P-0 

where p - 0 means "as point p approaches the origin." Therefore, 

lim KQ - l)(8 - a) -t- ak] = am 
P-0 

where m is any integer. Letting m = k gives 

and since (Q - 1) # 0 
lim e = n  
P-0 

Therefore, the curve goes through the origin at zero slope. 
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